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This Brief Report presents the hierarchical reaction-diffusion partial differential equations �PDE� system,
which reproduces a mean-square displacement and a density relaxation process corresponding to the anoma-
lous diffusion on a small-world network. These results are confirmed by the comparison with the known direct
numerical simulations.
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I. INTRODUCTION

The mathematical idea of a small-world network, intro-
duced in the paper �1�, is one of the most promising ap-
proaches for description of structures conditioned by real
world communities. For this reason, over the last years, a lot
of research has been done to describe small-world structures,
but most of them have focused on static properties. Next step
in this direction was established by the study of random
walks on small-world networks. Particularly, the direct nu-
merical simulations �2,3� have shown that the averaged dif-
fusion in a small-world network is anomalous one. Namely,
the decay rate for an initial localized source is faster then
normal �time dependence from �t−0.52 to �t−0.6 vs �t−0.5�.
As well, the mean-square displacement scales as �x2�t��� t�

with 0���2. Thus, these facts demonstrate that this pro-
cess is close to a superdiffusion.

This problem is also connected with challenges of modern
mathematical epidemiology. Namely, the spread of recent
diseases �SARS, HIV, etc.� strongly hangs upon short- and
long-range traffic flows �4,5�. Most of works concerning the
dynamical properties of such random walks deal with the
direct numerical simulation or various algebraic approaches.
However, a mathematical theory of the disease spread clearly
shows the powerfulness of coupled ordinary differential
equations �ODE� and PDE �for example, Kermack-
McKendrik and Fisher-Kolmogorov models�.

Most developed approaches describing a traffic-spread in-
teraction �Rvachev-Longini �6� and Sattenspiel-Dietz �7�
models as well as their modern improvements �8�� work with
ODE systems, where the spatial jumps are described by the
term consisting of a connectivity matrix. The sufficient im-
provement proposed in �7� incorporates a population subdi-
vision into interacting subgroups with various dynamical
properties �see also the overview of metapopulation ap-
proaches in �9� and references therein�.

Concerning the usage of coupled diffusion equations,
such an approach was implemented for two interacting social
groups of animals presented by the same species �10�.

The deeper insight into the problem provides the hierar-
chical metapopulation approach. The authors of �11� con-
sider this model within the following assumptions: there ex-
ists a set of communities, which are included in the hierarchy

equipped with the appropriate metric. For example, houses
and workplaces are the down level of communities; the next
level is represented by cities; countries are upper, etc. The
mixing inside of every community is homogeneous. Addi-
tionally, each individual can leave with some probability its
local community and enter a new context at each time step. It
has been shown that an epidemy spread strongly depends on
a transport parameter and hierarchy metric.

Obviously, such multiscaling could play a role of the
background, which allows to determine a dependence of dif-
fusion parameters on the averaged network topology. Since a
number of long-distance traveling individuals is sufficiently
less than a distributed low-mobile local population, these
conditions imply the close connection with the problem of
random walk on small-world-like networks.

The main goal of this Brief Report is to construct the
mean-field model for the random walk in small-world net-
work based on the hierarchy of elementary displacements.

II. MODEL OF NETWORK

The considered network �see Fig. 1, left� is constructed by
the way described in �2�. In means that there exists a regular
lattice in one dimension under periodic boundary conditions,
each node being connected symmetrically to its two nearest
neighbors. Additionally, a new bond is added with the prob-
ability p. The other end gets attached with equal probability
to any of the lattice node. These bonds will be referred as
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FIG. 1. �Color online� The mapping of a small-world network
into a hierarchical lattice: each node of the original network �left�
corresponds to a set of nodes placed along radial lines �right�; a full
density of walkers is subdivided into partial ones belonging to this
set according to possible displacement ways. The dashed arrows
illustrate these walks: same intensity �colors in online version�
picks the initial and end points for paths with different step size and
mapping of the correspondent targets.
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“short links ” below because each one connects two nodes
with the distance of 2�nmax over the regular lattice’s path.

For the reason to consider the averaged relaxation process
�the time decay function of a localized distribution and
mean-square displacement of a random walker�, one does not
need to consider an exact topological realization. The unique
requirement is the same value of p for an ensemble. In other
words, any node could be considered as an initial one. This
supposition corresponds to the strong mean-field approxima-
tion for an irregular distributed system.

III. TRANSITION TO THE CONTINUOUS MULTISCALE
LIMIT

The hierarchy of paths is introduced as follows: the mas-
ter equation for the probability U�j ,k� to find a walker in j-th
node at k-th iteration is

U�j,k + 1� − U�j,k� = �
i

WjiU�j,k� − U�i,k��
i

Wji, �1�

where W�ji� is the probability of going from node i to node
f during one time step.

The total quantity U�j ,k� can be subdivided into the par-
tial densities in such a way that

U�j,k� = �
n=1

nmax

un�j,k� , �2�

where the index n denotes the group, which walk along links
connecting the nodes with a distance n between them along
the background regular lattice. Graphically, this subdivision
corresponds to the concentric circles in the Fig. 1, right.

Within this representation, the discrete equation for each
group is

un�j,k + 1� − un�j,k� =
1

2
�un�j + 1,k� + un�j − 1,k��

+
p

nmax
�
i=1

nmax

�ui − un� , �3�

where the following suppositions are fulfilled: a walker can
�i� make a step with an equal probability only to the nearest
node along the corresponding concentric sublattice �the first
term in the right-hand side of Eq. �1��, i.e., the transition j
→ j+1 for the group marked by index n in Eq. �3� corre-
sponds to j→ j+n in Eq. �1�; or �ii� change its group with the
probability p /nmax �second term in the right-hand side of Eq.
�1��. Here, p is the probability of a “short links” presence and
1 /nmax is a normalizing factor taking into their number.
Therefore, their products merge all Wij for links length,
which are different from n. Note that the sum is taken over
all differences in the brackets. Therefore, nmax summands
pun /nmax give an outflow density from the n-th group, which
is equal to pun.

Let the number of nodes in the background regular lattice
be large enough to consider the continuous limit. Then, Eq.
�3� takes a form of the continuous reaction-diffusion equa-
tion

�un

�t
= Dn

�2un

�x2 + p	 1

nmax
U − un
 . �4�

Here, the summation in the reaction term is evaluated with
the usage of the definition �2� and Dn is a diffusion coeffi-
cient associated with the continuous approximation for dif-
fusion on the circles replacing circular sublattices �see the 1,
right�. It has a value Dn=n2D1 as a consequence of the for-
mula for a mean-square displacement �x2�� t. Here, D1 is the
diffusion coefficient corresponding to the walk over the
background regular lattice.

We assume that a redistribution over the radial lines con-
necting the circles does not take any time since each one
corresponds to the node as a whole one.

The full density is determined by the expression �2� with
the replacement �j ,k�→ �x , t�.

IV. EXAMPLE OF NUMERICAL SOLUTION

The numerical solution of the systems �4� and �2� have
been found with the use of the standard MATLAB routine
pdepe realizing the algorithm described in �12�. The distri-
butions u1�x ,0�= �1− p�exp�−x2 /D1

2� and un�1�x ,0�
= �p /nmax�exp�−x2 /D1

2� are used as initial values. Thus, their
sum representing a full initial density is the Gaussian
U�x ,0�=exp�−x2 /D1

2� too. The parameters nmax=8, D1=1,
and p=0.01 are used for the calculation on the interval �
−200,200� with impenetrable boundary conditions. The
value of p is chosen as equal to this one used in �2,3�.

The obtained solution of the systems �4� and �2� gives the
space-time distributions for partial densities un�x , t�. Their
summation �2� is a desired full density distribution over the
network. It was used for the further calculations. Particularly,
Fig. 2 represents the mean-square displacement in logarith-
mical coordinates. The numerical solution �x�t�2� is drawn
with the solid line. For the reference, there are also dashed
and dotted lines, which show the power-law functions of
time with the exponentials 1.62 �superdiffusion� and 1 �nor-
mal diffusion�.

The curve of mean-square displacement shows that the
process is a normal diffusion only during a short initial time
�the solid line coincides with the dotted one�. Actually, it
takes time compared with the characteristic time of one step
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FIG. 2. �Color online� The dependence of the calculated mean-
square displacement �solid line� on the time showing the transition
from normal diffusion �dotted line, red online� to superdiffusion
�dashed line, blue online�.
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in the discrete model. During the interval �t�1–10� the dif-
fusion on various scales starts to play a more significant role
and a spread is accelerating. Finally, t�10, the process takes
a form of stationary superdiffusion. The curve in the Fig. 2 is
drawn until the moment of a boundary effect influence. The
same three-stage behavior was found by the direct numerical
simulation in the paper �3�. Some difference in the relation of
the duration of the ranges corresponding to normal diffusion
and superdiffusion can be explained by the following reason:
the approach considered in this Brief Report is a strong
enough averaging, which implies a fast redistribution over all
possible paths �rings in the Fig. 1� and a “parallel motion”
along them. Conversely, the simulation deals with jumps via
one of possible links, and the resulting mean-square dis-
placement is averaging of such realizations. However, the
qualitative picture of regimes is the same as well as a com-
parison of curve’s slopes.

The comparison of the approximate model predictions
with the results on a relaxation obtained via an exact discrete
numerical simulation �2� can be done analyzing the solution
U�0, t� represented in the Fig. 3 as a solid line.

As before, there exists a slow relaxation during the time
compared with a step of the discrete walks. This means that
the main part of walkers is concentrated in the background
circle during the initial stage. After this time, there is a re-
distribution of walkers over the various paths that lead to the
faster decay. As a result, the walker motion goes according to
the superdiffusive relaxation, described in �2�. Note that the
correspondence is not only qualitative but also quantitative:
both approaches give the same value of decay exponential,
namely, −0.6 �see the region in the Fig. 3, where the solid
line U�0, t�� t−0.6 coincides with the referent dashed one�.
The direct numerical simulation �2� gives the exponential
−0.52 for p=0.01, but it has been mentioned there that it can
vary to −0.6. At is was discussed above, the faster relaxation
in the PDE model originated from the strength of coupling.
But here, the quantitative correspondence lies in the reason-

able range of values. Additionally, the analytical estimations
presented in �2� also predict the value of the relaxation ex-
ponential within a range �−0.5,−0.75�, where these bounds
correspond to a regular lattice and a Cayley tree. The final
stage �t�150� demonstrates the influence of finite-size ef-
fects. Thus, the U�0, t� obtained as a solution of the systems
�4� and �2� reproduces all details of the relaxation curve ob-
tained in �2�.

V. DISCUSSION AND CONCLUSION

In this Brief Report, the approach to description of the
relaxation process in small-world networks is proposed. It is
based on the hierarchy of coupled partial differential equa-
tions with the scalable diffusion coefficients, which depends
on the length of links of a network. This allows to take into
account possible long-distance travels by the natural way.

It has shown that the solution of this PDE system corre-
sponds to the results of the direct discrete numerical simula-
tion quite satisfactory for both anomalous relaxation and
mean-square displacement of random walkers density in a
small-world network.

It should be pointed out that such an approach is ideologi-
cally close to the model of superdiffusion in inhomogeneous
medium proposed recently in the article �13�. However, it
differs from the cited one by the microscopical physical as-
sumptions. The author of �13� studies a mixture of diffusing
particles partitioned into a set of groups according to their
free flight lengths; including reaction terms allows to de-
scribe random exchange between these groups via diffusion
processes. Conversely, the present approach considers a ran-
dom walk corresponding to the normal diffusion as an initial
microscopic level within every group of walkers. And the
reaction terms mean a simple exchange between various
pathways.

On the other hand, the usage of scalable diffusion coeffi-
cients has common properties with the recent approach �14�,
where fat-tailed distributions are obtained as the result of
introducing a diffusivity distribution function into the stan-
dard integral form of a solution for the simple diffusion
equation. But such a substitution is rather artificial in con-
trast to the system �4�, where the hierarchy of coefficients is
based on the decomposition of equations ab initio.

Finally, it could be pointed out that the described modifi-
cation is not the only possible one. The method for construct-
ing the coupled PDE system allows to take into account
more detailed information about travel length distributions as
well. For example, the partial densities in Eq. �2� could be
supplied with unequal weights, etc.
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FIG. 3. �Color online� The relaxation of a localized initial dis-
tribution: the solid line, representing the calculated density of walk-
ers at the origin, approaches the dashed line corresponding to the
power-law dependence �t−0.6.
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